Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there are consensus guidelines to standardize decellularization processes and ECM characterization, no specific criteria or standards regarding matrix sterility and biosafety have been established so far. This regulatory gap in safety, sterilization, and regulation criteria has hampered the clinical translation of decellularized scaffolds. In this review, we identify essential criteria for the safe clinical use of decellularized products from both human and animal sources. These include the decellularization efficacy, levels of chemical residue, preservation of ECM composition and physical characteristics, and criteria for the aseptic processing of decellularization to assure sterility. Furthermore, we explore key considerations for advancing decellularized scaffolds into clinical practice, focusing on regulatory frameworks and safety requirements. Addressing these challenges is crucial for minimizing risks of adverse reactions or infection transmission, thereby accelerating the adoption of tissue-engineered products. This review aims to provide a foundation for establishing robust guidelines, supporting the safe and effective integration of decellularized scaffolds into regenerative medicine applications.
The full publication can be found here.
Authors: Elena V. A. van Hengel, Luc J. W. van der Laan, Jeroen de Jonge, Monique M. A. Verstegen
This website uses cookies. Cookies are textfiles that are stored on the users harddrive when they visit a website, they are used to make websites function efficiently and serve information to the the owner of the website. Please accept the cookies to use the website properly.